Analyzing Data- Where to Begin Statistical Test Basics

Orthopaedic Residency Research Program 02/11/2022

Susan Thapa, MPH, PhD
Department of Orthopaedic Surgery

STATISTICAL TESTS

Uses:

- Compare groups
- Test hypothesis

Depends on:

- Data type- predictors, outcomes
- Data distribution

Hypothesis

Data: Primary/secondary

Select Tests

CHOOSING THE RIGHT TEST

	Outcome Variable				
Predictor variable	Continuous, normally distributed	Continuous, not normally distributed, or Ordinal with > 2 categories	Nominal with > 2 categories	Dichotomous	
Continuous, normally distributed	Correlation, Linear regression (F test)	Spearman rank correlation	Analysis of variance (F test)	Logistic regression (likelihood ratio test)	
Continuous, not normally distributed, or Ordinal with > 2 categories	Spearman rank correlation	Spearman rank correlation	Kruskall-Wallis	Wilcoxon rank sum	
Nominal with > 2 categories	Analysis of variance (F test)	Kruskall-Wallis	Contingency table (Chi- square test)	Contigency table (Chi-square test)	
Dichotomous	Comparison of means (t test)	Wilcoxon rank sum	Contingency table (Chi- square test)	Contingency table (Chi- square test or z statistic for one tail)	

Nonparametric tests, shown in italics, are tests that do not require that the data follow a specific distribution (e.g., normal).

TYPES OF DATA

Continuous:

• Blood pressure, age, BMI

Discrete: data split into different categories

- Dichotomous: binary-yes/no; treatment/control, surgery failure vs success
- Ordinal: Age groups, Pain scale, Performance scale
- Nominal: Race, Gender, marital status

Categories are named but without specific orders

Continuous Data

DISTRIBUTION OF CONTINUOUS DATA

- Continuous data often represented as histograms
- Data ordered into bins often of equal size
- Shows the relative frequency of the data within each bin
- Allows selection of statistical tests
- Testing of assumptions of statistical tests

NORMAL FREQUENCY DISTRIBUTION

- Mean = Median = Mode
- Symmetrical: Skew = 0
- Kurtosis (vertical stretch)= 3

SHAPE OF FREQUENCY DISTRIBUTION

Skewness: (unbalanced) horizontal stretching

Kurtosis: vertical stretching

T-TEST and ANOVA

When to use:

- Outcome-continuous; Predictor: Categorical
- Normal distribution
- Number of categories
 - T-test- predictors have 2 categories
 - ANOVA- predictors have >2 categories

Non-Parametric Alternatives

- T-test- e.g.: Mann-Whitney test
- ANOVA- e.g.: Kruskal-Wallis test

T-TEST and ANOVA

CORRELATION

Measures the strength of the linear relation between two continuous variables

Measures the tightness of a cluster about the fitted line

Correlation Coefficient

- Values range from -1 to +1
- Positive relation: positive coefficient
- Inverse/negative relation: negative coefficient
- 0: no correlation

Methods:

- Pearson's- Parametric
- Spearman's- Non-parametric

Limitation

- Do not handle nonlinear relationships accurately
- Non-linear relationship may be characterized as null relationship

CORRELATION

Non-Linear

LINEAR REGRESSION

Variables

- Continuous outcome
- One predictor (simple linear regression)
- Two or more predictors/independent variables (Multivariate)

Uses

- Prediction
- Hypothesis testing
- Modeling Causal Relation

LINEAR REGRESSION

- **Example**: Assessing the association between BMI and total cholesterol
- Regression equation:

$$Y = \beta 0 + \beta 1X1 + \beta 2X2 + \beta 3X3 + e$$

- β coefficient: directly used to estimate effect size
- R2- Variance explained by the model/independent variables

LINEAR REGRESSION ASSUMPTIONS

Independence of samples

Linear relation
between dependent
and predictors

Normality of residuals

Homoscedasticity: stable amount of variance throughout range of values

OUTLIERS

• Outliers: very far above or below mean (extreme in the x or y axis)

Categorical/Discrete data

ODDS RATIOS, RISK RATIOS, HAZARDS RATIOS

Odds Ratios (OR)

- Case control designs
- Cohort/Follow-up studies when outcomes are rare (<10% prevalence)
- Method- Logistic Regression
- OR=1 no association

Risk Ratios (RR)

- Cohort/Follow-up studies when outcomes are common (>10% prevalence)
- Retrospective or Prospective cohorts
- Method- Poisson/Negative binomial Regressions
- RR=1 no association

Hazard Ratios (HR)

- Time-to-event data (denominator is total follow-up time not total patients)
- Cohort/Follow-up studies- retrospective or prospective
- Method- Cox Regression
- HR=1 no association

CONTINGENCY TABLES

Uses:

Unadjusted OR/RR

$$OR = \frac{odds_1}{odds_2} = \frac{n_{11} / n_{12}}{n_{21} / n_{22}} = \frac{n_{11} n_{22}}{n_{12} n_{21}}$$

$$RR = \frac{Risk1}{Risk2} = \frac{n_{11}/n_1}{n_{21}/n_2}$$

- Chi-sq tests- significance tests
- One predictor at a time; no adjustment

	Outcome Present	Outcome Absent	Group Total
Group 1	n ₁₁	n ₁₂	n _{1.}
Group 2	n ₂₁	n ₂₂	n _{2.}
Outcome Total	n _{.1}	n _{.2}	n

CONTINGENCY TABLES

Uses:

Sensitivity/Specificity, etc. in diagnostic tests

TP: True Positive, FP: False Positive TN: True Negative, FN: False Negative

- Sensitivity (SN)
 - % with disease who test positive
 - = TP/(TP+FN)
- Specificity (SP)
 - % without disease who test negative
 - = TN/(FP+TN)
- Positive predictive value (PPV)
 - % positive test results that are true positives
 - = TP/(TP+FP)
- Negative predictive value (NPV)
 - % negative test results that are true negatives
 - = TN/(FN+TN)

LOGISTIC REGRESSION

Variables

- Categorical outcome
 - e.g.: Surgery failure/success
 - Ordinal/nominal- ordinal logistic regression

Uses

- Prediction
- Hypothesis testing
- Modeling Causal Relation

LOGISTIC REGRESSION

Regression equation:

$$\ln\left(\frac{\hat{p}}{(1-\hat{p})}\right) = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p$$

- Effect Size: e^{β} (Odds Ratio) used to estimate effect sizes
- C- statistics- Discriminatory power of the model
- Often continuous predictors are dichotomized at "cut-points" chosen to maximize discriminatory power

COX REGRESSION/SURVIVAL ANALYSIS

- Categorical outcome
- Follow-up time available and varies between observations/study participants
- Effect Sizes: e^{β} (Hazard Ratio) used to estimate effect sizes

COX REGRESSION/SURVIVAL ANALYSIS

- Whether or not a participant suffers the event of interest during the study period
- The follow up time for study participants

Survival Analysis Terms:

Time-to-event:

 The time from entry into a study to development of outcome

Censoring:

- Lost to follow up
- Drop out of the study
- Study ends before death/outcome

SURVIVAL ANALYSIS- Comparing 2 groups

Log-rank test:

Test of significance for difference between treated and control

BUILDING REGRESSION MODELS

Simultaneous

all independent variables entered together

Stepwise/Best subset

independent variables entered or removed according to some criterion

- significance (P-values)
- Model improvement (Ftest, AICC, BICC, etc.)

Hierarchical

independent variables entered in stages

Causal models

Main causal risk factors/independent variable and confounders

CORRELATED OUTCOMES, REPEATED MEASURES, MATCHING

Additional adjustments to regression models- e.g.:

- Repeated Measures ANOVA
- Conditional Logistic Regression- matching
- Generalized estimating equations (GEE)- correlated outcomes
 - Logistic
 - Poisson
 - Neg binomial
- Cox Regression for Clustered data

Summary

- Data type
- Data distribution
- Study Design
- Additional data characters:
 - Correlated
 - Matched
 - Repeated

Questions?